Fatty food drives aberrant Stem Cell growth in Mammalian Colon

 

Nice juicy high fat burger – just want you want – but just what you do not need.

A paper out today in Nature offers new insight into the impact of a high-fat diet  (HFD) on tumor growth and progression:

This study looked at the relationship between a high-fat diet and the how this impacted stem and progenitor cell function.  They found that a HFD in the mammalian intestine modulated a strong peroxisome proliferator-activated receptor delta (PPAR-delta) response in stem cells.  PPAR-delta not only alters the function of intestinal stem cells but importantly non-intestinal progenitor cells nearby allowing the development and growth of intestinal tumors.

Nice juicy high fat burger – just want you want – but just what you do not need.

Mice on the HFD saw a 30-50% weight gain with a  much higher incidence of intestinal tumors than control mice on a normal diet. The researchers saw a significant increase in the number of stem cell in mice on a HFD and importantly the stem cells appeared to grow in a manner which suggested that they were not receiving input immediately adjacent cells – the normal route to cell growth.  Non-stem, progenitor cells in the intestinal walls also started to act like stem cells and exhibited significantly longer lives.

There has been clear epidemiological evidence for a strong link between obesity and colorectal cancer and this study provides a clear and concise mechanism for tumor initiation and propagation. If you are on a HFD its time to change.

Original Research: Nature (2016). DOI: 10.1038/nature17173

High-fat diet enhances stemness and tumorigenicity of intestinal progenitors

Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we show that high-fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem cells of the mammalian intestine. Mechanistically, a HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-delta) signature in intestinal stem cells and progenitor cells (non-intestinal stem cells),  and pharmacological activation of PPAR-delta recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-delta-dependent manner. Notably, HFD- and agonist-activated PPAR-delta signalling endow organoid-initiating capacity to progenitors, and enforced PPAR-delta signalling permits these progenitors to form in vivo tumours after loss of the tumour suppressor Apc. These findings highlight how diet-modulated PPAR-delta activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumours.

Original Research: Nature (2016).
DOI: 10.1038/nature17173

Successful Soyuz Landing

What a  difference 100 years makes.

Scott Kelly returns to planet surface
While watching the NASA coverage of the Soyuz landing in Kazakhstan, I conferenced mother so that she could participate.  At 91 and counting she can truly reflect on the advances seen in her lifetime.  She recalls being at Eagle Farm (now Eagle Farm Airport) in Brisbane at the age of three when Kingsford Smith landed at 10.50 a.m. on 9 June,  1928.  My mother then a 3 year old was in the crowd in Brisbane when he landed.

In 1928, he earned global fame when he made the first trans-Pacific flight from the United States to Australia.

Scott Kelly returns to planet surface
She recalls the first US space launches and Pacific Ocean landings and the moon landings with great clarity and sees our space exploration endeavours as a reflection of the very best in humanity.

As she says we should be  “doing a lot more of this”.  She does quite rightly find the conference call remarkable given the feed being from Moscow and the USA over a conference call spanning the SW Pacific, with perfect quality.

Good luck to Commander Scott Kelly –  he will surely miss the ability to fly in low gravity now that he is back on earth.

The World Around Us!