Is it Time to Tax the Fat?

Lunch break

Obesity has become a real worldwide epidemic with an estimated 700 million people being so classified.  A new report in the latest issue of  New England Journal of Medicine highlights the issues and the conclusion are truly alarming.  This collaborative  (~200 researchers) research (funded by the Gates foundation) evaluated the trends in the prevalence of the overweight and obesity as well as the patterns of deaths and disability-adjusted life-years related to high BMI, according to age and sex, in 195 countries. This analysis supersedes all previous results from the Global Burden of Disease study with respect to high BMI by comprehensively reanalyzing all data from 1990 through 2015 using consistent methods and definitions.

Here are their key findings

  • In 2015, an estimated 604 million adults and 108 million children worldwide were obese. That represents about 12% of all adults and 5% of all children.
  • The prevalence of obesity doubled in 73 countries between 1980 and 2015 and continuously increased in most of the other countries.
  • China and India had the highest number of obese children. China and the U.S. had the highest number of obese adults.
  • Excess body weight accounted for about 4 million deaths — or 7.1% of all deaths — in 2015.
  • Almost 70 percent of deaths related to a high BMI were due to cardiovascular disease.
  • The study finds evidence that having a high BMI causes leukemia and several types of cancer, including cancers of the esophagus, liver, breast, uterus, ovary, kidney and thyroid.
  • In rich and poor countries, obesity rates increased, indicating “the problem is not simply a function of income or wealth. Changes in the food environment and food systems are probably major drivers. Increased availability, accessibility, and affordability of energy-dense foods, along with intense marketing of such foods, could explain excess energy intake and weight gain among different populations. The reduced opportunities for physical activity that have followed urbanization and other changes in the built environment have also been considered as potential drivers; however, these changes generally preceded the global increase in obesity and are less likely to be major contributors.”

The level of obesity across the western world is nothing short of alarming and will place enormous strain on an already burdened health case system.  Not surprisingly the USA is the fattest nation on the planet with a staggering 38% of the population over 15 YO being classified as obese and the percentage of obese women is even higher. The USA also holds the record for age-standardised childhood obesity, at 12.7%.  Australia, Canada, Mexico, UK and several European nations are not far behind.

Age Standardized Prevalence of Obesity Worldwide in 2015

More alarmingly there has been  a rapid increase in obesity levels across the world, driven by an abundance of high-energy food and effective marketing.

Relative Percent Change in Obesity Prevalence between 1980 and 2015 for Males >20
Relative Percent Change in Obesity Prevalence between 1980 and 2015 for Feales >20

It just seems that when large portions of the human population have ready access to food they simply cannot stop themselves from eating.  A portion of the issue is likely genetics.  Humans in cold climates that more efficiently converted calories into fat-stores were better able to survive the winter and better able to care for their offspring and had a higher chance of passing on their genes.

This advantage however fails the host when there is an inexhaustible supply of high calorific value food and exhaustible supply of will power or intelligence.

Health Effects of Obesity

There are consequences for obesity as well all know and these consequences are very expensive for the public health systems and devastating for the individuals concerned.

Epidemiological evidence supporting causality between high BMI and disease

A Solution

Education has simply failed.  In the west for too long, at schools and across the media excessive consumption and obesity have been major public health issues.  The shopkeepers have done a fantastic job in generating products and spaces which are appealing to consumers.  They have rarely acted in the public interest for example, adding salt and excessive sugar to breakfast cereals because it results in  consumer addiction.

It is time for somewhat more dramatic measures.  Western government could instigate 20% sugar and fat taxes on fast foods (in addition to existing consumer taxes) and reduce consumer taxes to zero on healthy alternatives for example unprocessed fruit and vegetables.  If this fails in addition to education then health care billing related to BMI could be a more draconian measure.  It is time to tax fat and reduce obesity.

Original Research

BACKGROUND

Although the rising pandemic of obesity has received major attention in many countries, the effects of this attention on trends and the disease burden of obesity remain uncertain.

METHODS

We analyzed data from 68.5 million persons to assess the trends in the prevalence of overweight and obesity among children and adults between 1980 and 2015. Using the Global Burden of Disease study data and methods, we also quantified the burden of disease related to high body-mass index (BMI), according to age, sex, cause, and BMI in 195 countries between 1990 and 2015.

RESULTS

In 2015, a total of 107.7 million children and 603.7 million adults were obese. Since 1980, the prevalence of obesity has doubled in more than 70 countries and has continuously increased in most other countries. Although the prevalence of obesity among children has been lower than that among adults, the rate of increase in childhood obesity in many countries has been greater than the rate of increase in adult obesity. High BMI accounted for 4.0 million deaths globally, nearly 40% of which occurred in persons who were not obese. More than two thirds of deaths related to high BMI were due to cardiovascular disease. The disease burden related to high BMI has increased since 1990; however, the rate of this increase has been attenuated owing to decreases in underlying rates of death from cardiovascular disease.

CONCLUSIONS

The rapid increase in the prevalence and disease burden of elevated BMI highlights the need for continued focus on surveillance of BMI and identification, implementation, and evaluation of evidence-based interventions to address this problem. (Funded by the Bill and Melinda Gates Foundation.)

Read the article in full
Read the supplementary materials

The Palaeozoic Variscan Oceans. An outstanding geoscience research contribution

 

The Variscan area of Europe with palinspastic movement of Iberia in relation to Central Europe to take account of the Bay of Biscay opening. Franke et al 2017

Gondwana Research 48 (2017) 257–284: Read Here
Wolfgang Franke, L. Robin M. Cocks, Trond H. Torsvik

The Variscan and related North American orogenies which now total 6,000 kilometres of strike, were caused by the opening and closing of the Rheic Ocean over a 100 million year period from 440MA to 320MA. This period saw the creation of several minor oceans and seaways, repeated periods of rifting and subduction and ultimately with the amalgamation of Laurussia and Gondwana, formation of the Pangea super-continent. Wolfgang Franks and colleagues have undertaken a comprehensive review and re-interpretation of the oceanic history of the Variscan domain. They attribute the complex geology to the opening and closing of 5 oceans or seaways, rifting and repeated subduction events. As a consequence of this complex tectonism, Variscan Europe is well endowed with mineral deposits although few are in production. Indeed this is where the industrial exploitation of Cu, Pb, Zn, Ag and Au commenced in post Roman times. The proposed complexity is very similar to that observed along the margins of the Tethyan Ocean to the east during a later period. This paper is well worth a detailed review.

In the comments below we summarize the Franks et al paper to produce a history of the Variscan.

A Brief History of the Variscan

Early Palaeozoic

  • From at least Cambrian times the Armorican Terrane Assemblage (ATA) appears to have formed a promontory at the edge of the Gondwana Craton near NW Africa
  • In the early Ordovician (~490MA) along the eastern side of Iapetus Ocean a rift developed along the NW flank of Gondwana forming the Rheic Ocean. A rifted Gondwana fragment Avalonia moved westwards towards Laurussia as the Rheic Ocean expanded at the expense of the Iapetus;
  • The Rheic Ocean became very wide;
  • Towards the end of the Ordovician Avalonia merged with Laurussia with much strike-slip faulting;

Silurian

  • During the Late Silurian and Early Devonian NE subduction of the Rheic Ocean lead to back-arc spreading and sedimentation in what is now in part the Rheno-Hercynian belt
  • Additional rifting in the Silurian (~440MA) along the NW margin of Africa resulted in the formation of the Saxo-Thuringian and the Galicia-Moldanubian seaways and the separation of the ATA elements from each other and ATA from Gondwana (with Palaeo-Adria to the immediate east).

Devonian

  • The Saxo-Thuringian Ocean and ultimately, collision of the Thuringia and Franconia elements of the ATA with Avalonia previously accreted onto Laurussia (Baltica) occurred at ~ 400MA with the final closure of the NW extent of the Rheic Ocean;
  • During the Devonian there was widespread strike-slip movement between ATA and Palaeo-Adria to the east possibly as consequence of east verging oblique subduction of the Saxo-Thuringian Ocean;
  • In the Early Emsian, the Rheic mid-ocean ridge was subducted southwards under the northernmost part of the ATA (Franconia), creat­ing the short-lived Baja California-type Rheno-Hercynian Ocean which incorporated the former back-arc basin sediments
  • The northward and lateral movements of Gondwana saw the successive closure of the Galicia-Moldanubian, Saxo-Thuringian and Rheic Oceans from south to north, over the period from about 380Ma through the Early carboniferous

Carboniferous and Permian

  • Laurussia and Gondwana finally collided at around 320MA to form the super-continent Pangea
  • Prior to this collision there was significant dextral strike-slip movement between Laurussia and Gondwana
  • Post collision, the Amorican terranes returned to roughly the same location prior to their separation more than 100 million years earlier;
  • This collision produced a very extensive orogen extending from the Ouachita and the Alleghanian Orogenies in North America through the Variscan of Western Europe;
  • Continued shortening into the Late Carboniferous saw dextral strike-slip faulting along the SW margin of Baltica and clockwise rotation of the Bohemian Arc into its current location
  • This orogenesis extended from the Carboniferous into the Middle Permian with collisional shortening of more than 1,000 km.

Abstract

Geological evidence, supported by biogeographical data and in accord with palaeomagnetic constraints, indicates that “one ocean” models for the Variscides should be discarded, and confirms, instead, the existence of three Gondwana-derived microcontinents which were involved in the Variscan collision: Avalonia, North Armorica (Franconia and Thuringia subdivided by a failed Vesser Rift), and South Armorica (Central Iberia/Armorica/ Bohemia), all divided by small oceans. In addition, parts of south-eastern Europe, including Adria and Apulia, are combined here under the new name of Palaeo-Adria, which was also Peri-Gondwanan in the Early Palaeozoic. Oceanic separations were formed by the break-up of the northern Gondwana margin from the Late Cambrian onwards. Most of the oceans or seaways remained narrow, but – much like the Alpine Cenozoic oceans – gave birth to orogenic belts with HP-UHP metamorphism and extensive allochthons: the Saxo-Thuringian Ocean be­tween North and South Armorica and the Galicia-Moldanubian Ocean between South Armorica and Palaeo-Adria. Only the Rheic Ocean between Avalonia and peri-Gondwana was wide enough to be unambiguously recorded by biogeography and palaeomagnetism, and its north-western arm closed before or during the Emsian in Europe. Ridge subduction under the northernmost part of Armorica in the Emsian created the narrow and short-lived Rheno-Hercynian Ocean. It is that ocean (and not the Rheic) whose opening and closure controlled the evolution of the Rheno-Hercynian fold-belt in south-west Iberia, south-west England, Germany, and Moravia (Czech Republic). Devonian magmatism and sedimentation set within belts of Early Variscan deformation and metamor­phism are probably strike-slip-related. The first arrival of flysch on the forelands and/or the age of deformation of foreland sequences constrains the sequential closure of the Variscan seaways (Galicia-Moldanubian in the Givetian; Saxo-Thuringian in the Early Famennian; Rheno-Hercynian in the Tournaisian). Additional Mid- to Late Devonian and (partly) Early Carboniferous magmatism and extension in the Rheno-Hercynian, Saxo-Thuringian and Galicia-Moldanubian basins overlapped with Variscan geodynamics as strictly defined. The Early Carboniferous episode was the start of episodic anorogenic heating which lasted until the Permian and probably relates to Tethys rifting.

Gondwana Research 48 (2017) 257–284: Read Here